Data analyst( РобоФинанс )
Описание
KA SH IF U SM AN
+923 03 63 686 90
ka sh if u sm an 9 83 @ gm ail. c o m
La h o re , P A K
Lin ke d in G it h ub T ab le au
D A TA A NA LY ST Apr 2 0 23 - J u n 2 0 23D ec 2 0 21 - J a n 2 0 23 U IU X D esig ner a t C od is ta n V en tu re sA ssis ta n t A dm in is tr a tio n a t D uls c o L LC D eve lo p ed d ash b oard s t h at c o nve ye d b usin ess in sig hts , w ir e fr a m es, p ro to ty p es, a n d v is u al
d esig ns f o r b oth w eb a n d m ob ile in te rfa ce s.
I w as a ls o r e sp onsib le f o r c o nd uctin g u se r r e se arc h a n d a n aly sis t o u n d ers ta n d u se r a n d
b usin ess n eed s a n d b eh avio rs .
M an ag ed a n d v a lid ate d D ub ai A ir p ort's c lie n t r e q ue sts d ata , e n su rin g a ccu ra cy a n d r e lia b ilit y
fo r b usin ess o p era tio ns.
A llo ca te d s ta ff a cro ss v a rio us d ep artm en ts b ase d o n c lie n t n eed s, o p tim iz in g r e so urc e
d is tr ib utio n a n d o p era tio nal e ffic ie n cy.
J u n 2 0 23 - O ct 2 0 24 U IU X D esig n A naly st C re ate d h ig h f id elit y m ocku p s a n d d ash b oard s, a lig nin g f in d in g s w it h b ra n d o b je ctiv e s &
im pro vin g U I f u n ctio nalit y .
P R O FE S SIO NA L E X PER IE N C E Dec 2 0 16 - D ec 2 0 20 B ac h elo r o f C om pute r S cie n ceA rid U niv e rs it y R aw alp in d iE D U C ATIO NSK IL LS P yth o n
S Q L
Tab le au
A dva n ce d E xc e l
P ow er B I
A nly tic a l T hin kin g
F ig m a
Clie n t M an ag em en t
A te ch p ro fe ssio nal tr a n sit io nin g in to d ata a n aly tic s. I a m p ro fic ie n t in P yth o n, S Q L, a n d T ab le au ,
w it h U I/ U X e xp erie n ce e n h an cin g m y a b ilit y to c re ate im pactfu l d ash b oard s, a n aly ze d ata , a n d
p re se n t in sig hts . E xc it e d t o s o lv e p ro b le m s a n d h elp t e am s m ake s m arte r d ecis io ns.
S U M MARYG it h ub D ash b oard W orld E co n om ic I n d ic ato rsP yth o n - T ab le au - V is u al S tu d io C od e
A naly ze d W orld E co no m ic In d ic a to rs ( 1 9 60 –2 0 18 ) t o id en tif y t r e n d s, d is p arit ie s, a n d c o rre la tio ns in
G DP, e le ctr ic it y u se , a n d in te rn et p en etr a tio n a cro ss r e g io ns a n d in co m e g ro up s.
Id en tif ie d e co no m ic d is p arit ie s ( G DP < $1,0 00 in lo w -in co m e g ro up s), a d ig it a l d iv id e ( lo w in te rn et
in S ub -S ah ara n A fr ic a ), G DP d om in an ce ( U SA , C hin a, J a p an ), a n d r e g io nal e n erg y v a ria tio ns.
P R O JE C TSG it h ub D ash b oard O ly m pic A th le te sS Q L - T ab le au
A naly ze d t h e O ly m pic G am es ( 1 8 9 6-2 0 16 ) t o u n co ve r t r e n d s in a th le te p artic ip atio n, g en d er
ra tio s, m ed al d is tr ib utio n & a g e d yn am ic s.
R eve ale d a r is e in a th le te s ( 1 7 6 in 1 8 9 6 t o 1 0 ,9 0 3 in 2 0 16 ), in cre ase d f e m ale p artic ip atio n ( 4 0% b y
20 16 ), U .S . m ed al d om in an ce ( 4 ,3 90 ), a n d a g e p atte rn s a cro ss s p orts lik e G ym nastic s a n d R oq ue .
S ta tis tic a l A naly sis
H yp oth esis T estin g
R eg re ssio n A naly sis
A /B T estin g
P ro b ab ilit y D is tr ib utio ns
S ta tis tic a l M od elin g
S Q L ( M yS Q L, P ostg re S Q L, S Q L
Serv e r)
M atp lo tlib
S eab orn
S A S
SPS S
Pan d as
N um py
P i tT bl
26 октября, 2016
Наталья
Город
Москва
Возраст
37 лет (17 мая 1988)
26 октября, 2016
Григорий
Город
Москва
Возраст
53 года (29 декабря 1969)
28 октября, 2016
Мадия
Город
Москва
Возраст
54 года ( 5 июня 1971)